Exercice 1

Donnez la représentation flottante, en *simple précision*, des nombres suivants :

1. 128
 - $S = 0$
 - $|128| = 128 = 10000000_2$
 - $128 = (1,0)_2 \times 2^7$
 - $M = 00\ldots0_2$ et $e = 7$
 - $E = e + \text{biais} = 7 + 127 = 6 + 128$
 - $E = 1000\ 0110_2$
 - $128 \rightarrow 0\ 1000\ 0110\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000$

2. -32.75
 - $S = 1$
 - $0.75 \times 2 = 1.5$
 - $0.5 \times 2 = 1$
 - $|-32.75| = 32.75 = 10\ 0000.11_2$
 - $32.75 = (1,0000011)_2 \times 2^5$
 - $M = 00000110\ldots0_2$ et $e = 5$
 - $E = e + \text{biais} = 5 + 127 = 4 + 128$
 - $E = 1000\ 0100_2$
 - $-32.75 \rightarrow 1\ 1000\ 0100\ 0000\ 0011\ 0000\ 0000\ 0000\ 0000$

3. 18.125
 - $S = 0$
 - $0.125 \times 2 = 0.25$
 - $0.25 \times 2 = 0.5$
 - $0.5 \times 2 = 1$
 - $|18.125| = 18.125 = 1\ 0010.001_2$
 - $18.125 = (1,0010001)_2 \times 2^4$
 - $M = 00100010\ldots0_2$ et $e = 4$
 - $E = e + \text{biais} = 4 + 127 = 3 + 128$
 - $E = 1000\ 0011_2$
 - $18.125 \rightarrow 0\ 1000\ 0011\ 00100010\ 0000\ 0000\ 0000\ 0000$
4. $0,0625$
 - $S = 0$
 - $0,0625 \times 2 = 0,125$
 - $0,125 \times 2 = 0,25$
 - $0,25 \times 2 = 0,5$
 - $0,5 \times 2 = 1$

$|0,0625| = 0,0625 = 0,0001_2$

- $0,0625 = (1,0)_2 \times 2^{-4}$
 - $M = 00...0_2$ et $e = -4$
 - $E = e + biais = -4 + 127$
 - $E = 0111 1011_2$
 - $0,0625 \rightarrow 0 01111011 00000000000000000000000$

Exercice 2

Donnez la représentation flottante, en **double précision**, des nombres suivants :

1. 1
 - $S = 0$
 - $|1| = 1 = 1_2$
 - $1 = (1,0)_2 \times 2^0$
 - $M = 00...0_2$ et $e = 0$
 - $E = e + biais = 0 + 1023$
 - $E = 011 1111 1111_2$
 - $1 \rightarrow 0 0111111111 00......0$

2. -64
 - $S = 1$
 - $|-64| = 64 = 100 0000_2$
 - $64 = (1,0)_2 \times 2^6$
 - $M = 00...0_2$ et $e = 6$
 - $E = e + biais = 6 + 1023 = 5 + 1024$
 - $E = 100 0000 0101_2$
 - $-64 \rightarrow 1 1000000101 00......0$
3. \(12,06640625\)

- \(S = 0\)
 - \(0,06640625 \times 2 = 0,1328125\)
 - \(0,1328125 \times 2 = 0,265625\)
 - \(0,265625 \times 2 = 0,53125\)
 - \(0,53125 \times 2 = 1,0625\)
 - \(0,0625 \times 2 = 0,125\)
 - \(0,125 \times 2 = 0,25\)
 - \(0,25 \times 2 = 0,5\)
 - \(0,5 \times 2 = 1\)

\(|12,06640625| = 12,06640625 = 1100,00010001_2\)

- \(12,06640625 = (1,1000010001)_2 \times 2^3\)
 - \(M = 10000100010...0_2\) et \(e = 3\)
 - \(E = e + \text{biais} = 3 + 1023 = 2 + 1024\)
 - \(E = 100 \ 0000 \ 0010_2\)
 - \(12,06640625 \rightarrow 0 \ 10000000010 \ 100000100010...0\)

4. \(0,2734375\)

- \(S = 0\)
 - \(0,2734375 \times 2 = 0,546875\)
 - \(0,546875 \times 2 = 1,09375\)
 - \(0,09375 \times 2 = 0,1875\)
 - \(0,1875 \times 2 = 0,375\)
 - \(0,375 \times 2 = 0,75\)
 - \(0,75 \times 2 = 1,5\)
 - \(0,5 \times 2 = 1\)

\(|0,2734375| = 0,2734375 = 0,010001112\)

- \(0,2734375 = (1,00011)_2 \times 2^{-2}\)
 - \(M = 000110...0_2\) et \(e = -2\)
 - \(E = e + \text{biais} = -2 + 1023\)
 - \(E = 011 \ 1111 \ 1101_2\)
 - \(0,2734375 \rightarrow 0 \ 01111111101 \ 000110...0\)
Exercice 3
Donnez la représentation décimale des nombres codés en simple précision suivants :

1. 1011 1101 0100 0000 0000 0000 0000 0000_2
 - S = 1 → négatif
 - e = E – biais = 0111 1010_2 – 127
 e = 122 – 127
 e = 5
 - m = (1,M)_2 = (1,1)_2
 - –m × 2^e = –(1,1)_2 × 2^5
 = –(11)_2 × 2^6
 = –3 × 2^6 = –0,046875

2. 0101 0101 0110 0000 0000 0000 0000 0000_2
 - S = 0 → positif
 - e = E – biais = 1010 1010_2 – 127
 e = 170 – 127
 e = 43
 - m = (1,M)_2 = (1,11)_2
 - +m × 2^e = +(1,11)_2 × 2^{43}
 = +(111)_2 × 2^{41}
 = +7 × 2^{41} ≈ +1,5393 × 10^{13}

3. 1100 0001 1111 0000 0000 0000 0000 0000_2
 - S = 1 → négatif
 - e = E – biais = 1000 0011_2 – 127
 e = 131 – 127
 e = 4
 - m = (1,M)_2 = (1,111)_2
 - –m × 2^e = –(1,111)_2 × 2^4
 = –(11110)_2 × 2^0
 = –30

4. 1111 1111 1000 0000 0000 0000 0000 0000_2
 - S = 1, E = 1...1 et M = 0...0 → –∞

5. 0000 0000 0100 0000 0000 0000 0000 0000_2
 - E = 0...0 et M ≠ 0...0 → représentation dénormalisée
 - S = 0 → positif
 - m = (0,M)_2 = (0,1)_2
 - +m × 2^{1-biais} = +(0,1)_2 × 2^{126}
 = +(1)_2 × 2^{127}
 = +2^{127} ≈ +5,877 × 10^{39}
Exercice 4
Donnez la représentation décimale des nombres codés en **double précision** suivants :

1. **403D 4800 0000 0000₁₆**
 \[= 0100 0000 0111 1101 0100 1000 0000...0\]
 - **S = 0 → positif**
 - **e = E – biais = 100 0000 0011₂ – 1023 = 1027 – 1023**
 - **e = 4**
 - **m = (1,M)₂ = (1,110101001)₂**
 - **+m × 2^e = +(1,110101001)₂ × 2^4**
 - **= +(11101,01001)₂ = 29 + 2⁻² + 2⁻⁵ = 29 + 0,25 + 0,03125**
 - **= +29,28125**

2. **C040 0000 0000 0000₁₆**
 \[= 1100 0000 0100 0000...0\]
 - **S = 1 → négatif**
 - **e = E – biais = 100 0000 0100₂ – 1023 = 1028 – 1023**
 - **e = 5**
 - **m = (1,M)₂ = (1,0)₂**
 - **–m × 2^e = –(1,0)₂ × 2^5**
 - **= –2⁵ = –32**

3. **BFC0 0000 0000 0000₁₆**
 \[= 1011 1111 1100 0000...0\]
 - **S = 1 → négatif**
 - **e = E – biais = 011 1111 1100₂ – 1023 = 1020 – 1023**
 - **e = –3**
 - **m = (1,M)₂ = (1,0)₂**
 - **–m × 2^e = –(1,0)₂ × 2⁻³**
 - **= –2⁻³ = –0,125**

4. **8000 0000 0000 0000₁₆**
 \[= 1000 0000 0000 0000...0\]
 - **S = 0, E = 0...0 et M = 0...0 → –0**

5. **FFF0 0001 0000 0000₁₆**
 \[= 1111 1111 1111 0000 0000 0000 0001 0000...0\]
 - **E = 1...1 et M ≠ 0...0 → NaN**
Exercice 5
Pour chaque question, vous traiterez le cas des codages simples et doubles précisions du format à mantisse normalisée.

1. Déterminez, en valeur absolue, le plus petit et le plus grand nombre flottant.

- Simple précision

 - Minimum
 \[\text{Min}_{\text{simple}} = m_{\text{min}} \times 2^{e_{\text{min}}} \]
 \[m_{\text{min}} = (1,0)_2 = 1 \]
 \[e_{\text{min}} = E_{\text{min}} - \text{biais} \quad \text{avec} \quad E_{\text{min}} = 1 \]
 \[e_{\text{min}} = 1 - 127 = -126 \]
 \[\text{Min}_{\text{simple}} = 2^{-126} \approx 1,1755 \times 10^{-38} \]

 - Maximum
 \[\text{Max}_{\text{simple}} = m_{\text{max}} \times 2^{e_{\text{max}}} \]
 \[m_{\text{max}} = (1,M_{\text{max}})_2 = 1 + (0,M_{\text{max}})_2 = 1 + M_{\text{max}} \times 2^{-23} \quad \text{avec} \quad M_{\text{max}} = 2^{23} - 1 \]
 \[m_{\text{max}} = 1 + (2^{23} - 1) \times 2^{-23} = 1 + 1 - 2^{-23} = 2 - 2^{-23} = 2 \times (1 - 2^{-24}) \]
 \[e_{\text{max}} = E_{\text{max}} - \text{biais} \quad \text{avec} \quad E_{\text{max}} = (2^8 - 1) - 1 = 254 \]
 \[e_{\text{max}} = 254 - 127 = 127 \]
 \[\text{Max}_{\text{simple}} = 2 \times (1 - 2^{-24}) \times 2^{127} \]
 \[\text{Max}_{\text{simple}} = (1 - 2^{-24}) \times 2^{128} \approx 3,4028 \times 10^{38} \]

- Double précision

 - Minimum
 \[\text{Min}_{\text{double}} = m_{\text{min}} \times 2^{e_{\text{min}}} \]
 \[m_{\text{min}} = (1,0)_2 = 1 \]
 \[e_{\text{min}} = E_{\text{min}} - \text{biais} \quad \text{avec} \quad E_{\text{min}} = 1 \]
 \[e_{\text{min}} = 1 - 1023 = -1022 \]
 \[\text{Min}_{\text{double}} = 2^{-1022} \approx 2,2251 \times 10^{-308} \]

 - Maximum
 \[\text{Max}_{\text{double}} = m_{\text{max}} \times 2^{e_{\text{max}}} \]
 \[m_{\text{max}} = (1,M_{\text{max}})_2 = 1 + (0,M_{\text{max}})_2 = 1 + M_{\text{max}} \times 2^{-52} \quad \text{avec} \quad M_{\text{max}} = 2^{52} - 1 \]
 \[m_{\text{max}} = 1 + (2^{52} - 1) \times 2^{-52} = 1 + 1 - 2^{-52} = 2 - 2^{-52} = 2 \times (1 - 2^{-53}) \]
 \[e_{\text{max}} = E_{\text{max}} - \text{biais} \quad \text{avec} \quad E_{\text{max}} = (2^{11} - 1) - 1 = 2046 \]
 \[e_{\text{max}} = 2046 - 1023 = 1023 \]
 \[\text{Max}_{\text{double}} = 2 \times (1 - 2^{-53}) \times 2^{1023} \]
 \[\text{Max}_{\text{double}} = (1 - 2^{-53}) \times 2^{1024} \approx 1,7977 \times 10^{308} \]
2. Quel est le plus petit nombre strictement positif qui, ajouté à 1, donne un résultat différent de 1 ?

- **Simple précision**

On pose : \(1 = m \times 2^e \) avec \(m = (1,0)_2 \) et \(e = 0 \).
Le codage de la mantisse \(M \) contient donc 23 zéros.

Observons maintenant l’addition ci-dessous :

\[
\begin{array}{c|c|c}
& 2^0 & 2^{-1} \\
\hline
\uparrow & \uparrow & \uparrow \\
1,0000000000000000000000000000000 & \text{← Nombre 1} \\
+ 0,0000000000000000000000000000000101010 & \text{← Petit nombre} \\
= 1,0000000000000000000000000000000101010 & \text{← Résultat}
\end{array}
\]

Le codage de la mantisse du résultat doit contenir autre chose que 23 zéros si l’on souhaite obtenir une différence avec le codage de la mantisse du nombre 1. Le plus petit nombre possible pour obtenir cette différence est donc \(2^{-23} \).

- **Double précision**

Avec un raisonnement identique à celui du codage en simple précision, on obtient \(2^{-52} \).

Exercice 6

Soit le programme suivant écrit en langage C :

```c
#include <stdio.h>
void main()
{
    float f1, f2, f3, r;

    f1 = 1E25;
    f2 = 16;

    f3 = f1 + f2;
    r = f3 - f1;

    printf("r = %f\n", r);
}
```

Indication : \(10^{25} \approx 2^{83} \)
1. Quelle est la valeur de r qui est affichée à la fin de l’exécution de la fonction `main()` ? Expliquez votre raisonnement.

- On pose : $f_1 = (1,M_1) \times 2^{e_1}$

 Sachant que $f_1 \approx 2^{83}$, on en déduit que $f_1 \approx (1,0) \times 2^{83}$ avec $e_1 = 83$ et $M_1 = 0\ldots0$

- On pose : $f_3 = (1,M_3) \times 2^{e_3}$

- Observons maintenant l’addition ci-dessous :

\[
\begin{array}{cccc}
2^{83} & 2^{60} & 2^4 \\
\uparrow & \uparrow & \uparrow \\
1,00000000000000000000000000000000000\ldots000 & \times 2^{83} & \rightarrow f_1 = 10^{25} \approx 2^{83} \\
+ 0,00000000000000000000000000000000000\ldots100 & \times 2^{83} & \rightarrow f_2 = 16 = 2^4 \\
= 1,00000000000000000000000000000000000\ldots100 & \times 2^{83} & \rightarrow f_3 = 2^{83} + 2^4 \\
\end{array}
\]

On constate que la plus petite valeur de f_2 pouvant modifier la valeur de M_3 est la valeur 2^{60}. Or dans le programme, f_2 possède la valeur 16 : aucun changement n’apparaît donc sur le résultat de l’addition.

L’instruction $f_3 = f_1 + f_2$ est équivalente à $f_3 = f_1$.

La soustraction $r = f_3 - f_1$ devient alors $r = f_3 - f_3 = 0$.

La valeur affichée à la fin de l’exécution de la fonction `main()` est donc 0.

2. Dans le programme, on a $f_1=10^{25}$. Supposons maintenant que $f_1=10^n$ avec n entier positif. Jusqu’à quelle valeur de n un résultat correct apparaîtra-t-il sur r ?

- Pour que l’addition $f_3 = f_1 + f_2$ soit valide, il faut que la valeur 16, contenue dans f_2, puisse modifier le codage de la mantisse du résultat M_3. La valeur du poids le plus faible de M_1 doit donc être au maximum de 2^4, car à partir de 2^5, la valeur de f_2 sera trop petite pour être prise en compte.

\[
\begin{array}{cccc}
2^{28} & 2^5 \\
\uparrow & \uparrow \\
1,00000000000000000000000000000000000\ldots000 & \times 2^{28} & \rightarrow f_1 = 2^{28} \\
+ 0,00000000000000000000000000000000000\ldots100 & \times 2^{28} & \rightarrow f_2 = 16 = 2^4 \\
= 1,00000000000000000000000000000000000\ldots100 & \times 2^{28} & \rightarrow f_3 = 2^{28} + 2^4 \\
\end{array}
\]

- La variable f_1 doit donc être strictement inférieure à 2^{28} afin que l’addition avec la variable f_2 puisse entraîner un changement dans le codage de la mantisse M_3.

T.D. 2 – Corrigé
• Ce qui donne :
\[f_1 < 2^{28} \]
\[10^n < 2^{28} \]
\[n < \log(2^{28}) \]
\[n < 8,42 \]

\[n_{\text{max}} = 8 \]

3. Même question si les variables \(f_1, f_2, f_3 \) et \(r \) sont déclarées en double précision.

Avec un raisonnement identique à celui du codage en simple précision, on obtient :
\[f_1 < 2^{53+52} \]
\[10^n < 2^{57} \]
\[n < \log(2^{57}) \]
\[n < 17,15 \]

\[n_{\text{max}} = 17 \]

Il ne faut jamais sous-estimer les risques d’erreur liés à la manipulation de variables entières ou flottantes. Des débordements ou des problèmes de précision peuvent survenir à tout moment et déjouer la vigilance de n’importe quel développeur, même expérimenté.

À propos de la fusée Ariane

Voici un exemple célèbre d’erreur de programmation minime aux conséquences énormes. Lors de son tout premier vol le 4 juin 1996, la fusée Ariane 5 a explosé quarante secondes seulement après son décollage de la base de Kourou en Guyane. La perte financière fut estimée à environ 500 millions de dollars. Le CNES (Centre National d’Études Spatiales) et l’ESA (European Space Agency) ont immédiatement lancé une enquête. Un comité d’experts internationaux fut réuni et un rapport sans équivoque fut livré un mois plus tard : l’explosion était due à une erreur de logiciel.

En cause, les SRI ou Systèmes de Référence Inertiels. Cette partie du logiciel, qui provenait du lanceur Ariane 4, n’avait pas été adaptée à la plus grande vitesse horizontale d’Ariane 5. Du coup, lors d’une conversion d’un nombre flottant sur 64 bits, contenant la vitesse horizontale, en un entier sur 16 bits, l’opération a provoqué un débordement et une exception a été générée. Malheureusement, aucune routine de traitement de cette exception n’ayant été prévue, c’est le traitement d’exception par défaut qui fut exécuté et le programme tout entier termina son exécution.

Depuis, les concepteurs du logiciel d’Ariane ont mis en place un plan de programmation défensive qui est reconnu comme une référence en la matière.

Jean-Christophe Arnulfo, Métier Développeur, Paris, Dunod, 2003

Exercice 7

Sachant que votre compilateur C utilise la norme IEEE 754 pour la gestion des flottants, donnez une fonction en langage C, de quelques lignes seulement, permettant de visualiser sous forme hexadécimale la représentation IEEE 754 d’un nombre flottant, simple précision, passé en paramètre.

Le principe de base consiste à trouver l’emplacement où le nombre flottant est stocké en mémoire. Il faut ensuite accéder à cette valeur, en la considérant comme un nombre entier, et l’afficher au format hexadécimal.

Ceci peut être réalisé soit à l’aide de pointeurs, soit à l’aide du mot clé `union` :

- **Solution à l’aide de pointeurs** :

```c
void Convert(float fv)
{
    // Déclare un pointeur sur un entier 32 bits.
    long* pl;
    // Convertit le pointeur flottant vers un pointeur entier.
    // Le pointeur entier pointe la même adresse mémoire que le pointeur flottant.
    pl = (long*)(&fv);
    // Affiche le résultat au format hexadécimal sur 8 chiffres.
    printf("Code hexadecimal IEEE 754 de %.1f : %08x\n", fv, *pl);
}
```

- **Solution à l’aide du mot clé `union`** :

```c
void Convert(float fv)
{
    // Déclare un flottant et un entier dans le même espace mémoire.
    union
    {
        float f;
        long l;
    };
    // Copie la valeur à convertir dans le flottant de l'union.
    f = fv;
    // Affiche le résultat au format hexadécimal sur 8 chiffres.
    printf("Code hexadecimal IEEE 754 de %.1f : %08x\n", f, l);
}
```